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Abstract

This paper focuses on constrained and unconstrained partial derivatives
of the measurement equations used in spacecraft attitude determination. Six
different approaches to these calculations are examined. Although all of these
are found in the literature, there are many missing details and unexplained
subtleties. This paper presents these details and explains the subtleties.

INTRODUCTION

Attitude determination filters are based on a model of the attitude kinematics and the measure-
ment process. The attitude kinematics may be modeled by the quaternion differential equation and
the measurement equations may be written in terms of the attitude quaternion. The quaternion
must be either implicitly or explicitly constrained to unit norm for it to represent attitude. The
quaternion differential equation preserves the norm of the quaternion, so for an initial quaternion q
of unity norm, we have |q| = 1 implicitly for all time. The measurement equation y = h(q) is then
written directly in terms of the quaternion; the constraint is implicit in this expression. An explicit

unity norm constraint means that an unconstrained quaternion is explicitly normalized in the mea-
surement equation, e.g., y = h(q/|q|). Physically realizable measurements are insensitive to the
norm of the quaternion, so the quaternion in the measurement model must be either implicitly or
explicitly constrained.

If the quaternion norm is modeled as being arbitrary, the quaternion must be normalized ei-
ther explicitly or implicitly in an attitude measurement equation. This is because any physical
measurement of attitude does not depend on the quaternion norm. Nevertheless, one can find
examples in the literature where physical and mathematical constraints are either ignored in the
design of an attitude determination filter, or ad hoc procedures are included in the filter to account
for constraints [1, 2]. Detailed discussions can be found in [3]–[7]. The problem of constraints is
well understood in optimization and least-squares [9], but apparently not in the context of Kalman
filtering and, in particular, attitude determination.

The Extended Kalman Filter requires a measurement sensitivity function, which contains the
partial derivative of the measurement equation with respect to the attitude state. In this paper
we focus on the quaternion as the attitude state in the filter. This is not meant to imply approval

of the quaternion as the filter state; on the contrary it is not recommended [3]. The measurement
sensitivity equation in [10, Eq. (81)] is given without mentioning subtle details of its derivation, in
particular the effect of the quaternion norm constraint. It is shown in this paper that an extraneous
term appears in the vector-measurement sensitivity function if the quaternion-norm constraint is
disregarded when computing the partial derivative.
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Much can be found in the literature about vector measurements, and it seems to this author
that there is too much emphasis on vector measurements. The cornucopia of references on vector
measurements won’t be given here; the reader should find sufficient detail and references in [5]–[8].
The vector representation of an attitude measurement is generally one of convenience. In fact, only
the magnetometer is a true vector sensor. Focal plane sensors, which include detector arrays and
sun sensors, produce attitude measurements in two orthogonal directions in the focal plane. Devices
that produce a quaternion “measurement” do so by converting several focal plane measurements
to vectors, from which the quaternion is computed, usually by the QUEST algorithm [8].

We will first focus on vector measurement models and the quaternion as an unconstrained and
constrained attitude state. We will then examine the focal plane measurement model, also with
unconstrained and constrained quaternion attitude states. Quaternion measurement models are
considered next, and finally the vector measurement model with the rotation vector as the attitude
state is considered for comparison.

The notation, definitions, and identities for quaternion algebra and direction cosine matrices
used in our analysis are provided in Appendix A. The equations in Appendix A are stated without
proof. The studious reader can easily prove them or find them in standard texts and references
such as [11] and [12], albeit with notational differences.

VECTOR MEASUREMENT, UNCONSTRAINED QUATERNION, NONNORMALIZED
ATTITUDE MATRIX

The vector measurement model in this case comprises the nonnormalized attitude matrix and
unconstrained quaternion,

h(q) = vb = A(q)vi (1)

where vi is an inertial reference vector with |vi| = 1. This model is not physically realistic because
the norm of the vector measurement should not depend on the norm of the attitude quaternion.
Nevertheless, it is the model used in [1] and [2], where the norm of the quaternion is not con-
strained. Because of the lack of a quaternion norm constraint, the derivative is taken assuming the
components of the quaternion are independent.

We will now derive the measurement sensitivity matrix. To reduce notational clutter, we will
write v for vi in equation (1). From equations (1), (A–16b), and (A–17) we have

h(q) = v(s2 + |r|2) + 2s(v × r) + 2(v × r)× r (2)

Define v̄ = [ v0 ], v̂
b = vb/|vb|, q̂ = q/|q|, and Ξ̂ = Ξ(q̂). (The caret denotes a unit vector, not

an estimate.) The unconstrained measurement sensitivity matrix is obtained by differentiating
equation (2) with respect to q but without regard to the norm constraint on q. This sensitivity
matrix is given by†

HQ =
∂h

∂qT
= 2v[rT s] + 2

∂

∂qT

[

s(v × r)
]

+ 2
∂

∂qT

[

(v × r)× r
]

= 2v[rT s] + 2
[

s[v×] + [(v × r)×]− [r×][v×]
∣

∣ v × r
]

= 2
[

s[v×] + rvT − vrT − [r×][v×]
∣

∣ vs + v × r
]

= 2[I 0]

[

sI− [r×] −r

rT s

][

[v×] v

−vT 0

]

†The notation HQ, HO, and HC is from [4].
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= 2[I 0] [q∗~] [v̄~] (3a)

= 2[I 0] [q∗~] [v̄~] [q~] [q∗~]/|q|2

= 2|q|−2[I 0] [v̄b
~] [q~]T

= 2|q|−2[I 0]

[

[vb×] vb

−(vb)T 0

][

ΞT

qT

]

= 2|q|−2
(

[vb×]ΞT + vbqT
)

(3b)

= 2
(

[v̂b×]Ξ̂T + v̂bq̂T
)

(3c)

This can be shown to be equal to Bar-Itzhack’s measurement sensitivity equation [1, 2]. From
equation (3a) we have

HQ = 2[I 0] [q∗~] [v̄~]

= 2[I 0]

[

ΞT

qT

]

[v̄~]

= 2ΞT [v̄i
~] . (4)

Multiplying this out term by term yields Bar-Itzhack’s expressions for HQ.
Shuster derived the sensitivity matrix for a vector measurement and unconstrained quaternion

state [5, 6] but it is not obvious that his result is the same as equations (3a)–(3c). This equivalence
is shown in Appendix B.

Because the measurement equation (1) is sensitive to the quaternion norm, the sensitivity
matrix, equation (3b), contains the term vbqT . The sensitivity to variations of q in the direction
of q is nonzero, that is, HQq = 2vb, which is in the direction of the measurement vector vb.

VECTOR MEASUREMENT, UNCONSTRAINED QUATERNION, NORMALIZED
ATTITUDE MATRIX

The measurement model in this case comprises the normalized attitude matrix

h(q) = vb = |q|−2A(q)vi (5a)

= A(q/|q|)vi . (5b)

As in the previous section we will not enforce a quaternion norm constraint. The derivative is taken
assuming the components of the quaternion are independent. Then

HO =
∂h

∂qT
= |q|−2 ∂

∂qT
A(q)vi + A(q)vi

[

∂

∂qT
|q|−2

]

= 2|q|−2
(

[vb×]ΞT + vbqT
)

− 2|q|−4A(q)viqT

= 2|q|−2
(

[vb×]ΞT + vbqT
)

− 2|q|−2vbqT

= 2|q|−2[vb×]ΞT

= 2[v̂b×]Ξ̂T . (6)

This does not include the term v̂bq̂T seen in equation (3c) because the quaternion is explicitly
normalized in the measurement equation (5), so there is no sensitivity to variations of q in the
direction of q, that is, HOq = 0.
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VECTOR MEASUREMENT, CONSTRAINED QUATERNION

We now examine the case where the quaternion is fixed to unit norm in the vector measurement
equation. Because the quaternion norm is now fixed, there is no variation in the direction of q. The
measurement sensitivity matrix can be derived by projecting HQ onto the orthogonal complement

of q̂. Postmultiplying (3c) by I − q̂q̂T = Ξ̂ Ξ̂T yields

HC = HQ Ξ̂ Ξ̂T

= 2[v̂b×]Ξ̂T , (7)

which is the same as (6). This is the “classical” (LMS) definition [10]. Note that HCq = 0, which
should already be obvious.

FOCAL PLANE MEASUREMENTS

The vector vs in the sensor reference frame is related to a vector vi in the inertial reference
frame i by

vs = Ts
bA(q)vi , (8)

where Ts
b is the transformation (mounting) matrix from the body frame to the sensor frame. (Ts

b

was omitted from equation (1), without loss of generality, to simplify the discussion.) We can also
consider the explicitly normalized model

vs = |q|−2Ts
bA(q)vi . (9)

The line-of-sight vector in the sensor frame is vs = [vs
x, vs

y, vs
z]

T . The focal-plane measurement
model is

y = h(vs) =

[

vs
x/vs

z

vs
y/v

s
z

]

. (10)

Our analysis will start with equations (8) and (10) for the case of an unconstrained quaternion
state. The measurement sensitivity matrix is obtained by the chain rule

HF =
∂h(vs)

∂qT
=

∂h

∂(vs)T
∂vs

∂qT
. (11)

Differentiating (10) and substituting (3c) we get

HF =

[

1/vs
z 0 −vs

x/(vs
z)

2

0 1/vs
z −vs

x/(vs
z)

2

]

Ts
b

[

2
(

[v̂b×]Ξ̂T + v̂bq̂T
)

]

=

[

1/vs
z 0 −vs

x/(vs
z)

2

0 1/vs
z −vs

x/(vs
z)

2

]

[

2
(

[v̂s×]Ts
b Ξ̂

T + v̂sq̂T
)

]

=

[

1/vs
z 0 −vs

x/(vs
z)

2

0 1/vs
z −vs

x/(vs
z)

2

]

[v̂s×]Ts
b Ξ̂

T (12)

The middle step was obtained by using equation (A–4) and the term v̂sq̂T was annihilated in the
last step because variations in the direction of v̂s (caused by norm variations of q) do not affect
the focal plane measurement as can be seen in equation (10). Equation (12) is obtained also if we
start with the vector measurement model (8) for the constrained quaternion state or (9) for the
unconstrained quaternion state. Thus we see that the sensitivity to variations in the quaternion
norm is zero, i.e., HFq = 0.
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QUATERNION MEASUREMENTS

There is no device that physically measures a quaternion, rather it is computed from vector
measurements or from focal plane measurements converted to vectors, usually by using the QUEST
algorithm [8]. The computed quaternion “measurement” p has unit norm, so the measurement as
a function of an unconstrained quaternion state q is

p = h(q) = q/|q| . (13)

The measurement sensitivity matrix is then

HP =
∂

∂qT

(

q(qTq)−1/2
)

=
1

|q|

(

I −
1

|q|2
qqT

)

=
1

|q|
Ξ̂ Ξ̂T (14)

Since the quaternion “measurement” p is of unit norm, the sensitivity of p to variations of the state
q in the direction of q is zero, that is, HPq = 0. For the measurement model h(q) = q with the
norm of q constrained, the sensitivity matrix is given by equation (14) and we get HPq = 0.

In [1] and [2] the quaternion measurement equation is taken as h(q) = q, where the quaternion
norm is unconstrained, and the sensitivity matrix there is H = I (the 4×4 identity matrix), which
is incorrect.

MEASUREMENT EQUATION OF CHOUKROUN, ET AL.

Choukroun, et al., [13] developed the derived measurement equation

z = w̄b ⊗ q − q ⊗ v̄i , (15)

where vi is an inertial reference vector, wb is a vector measurement in the body frame, and z is
the derived measurement. (For convenience, the sign of z is changed from that in [13], which is
inconsequential because the expression equals zero.) This measurement equation originated with
Shuster [5] in the context of this paper, and was derived independently for a square-root QUEST
algorithm in [14].

The equivalence of equations (15) and (5) can be seen in the following result.

z = w̄b ⊗ q − q ⊗ v̄i

= [q~]w̄b − [q⊗]v̄i

= [q~]
(

w̄b − |q|−2[q~]T [q⊗]v̄i
)

= Ξ
(

wb − |q|−2A(q)vi
)

. (16)

The expression in parenthesis is the filter residual; the leading Ξ disappears upon substitution into
the Kalman filter (attitude determination filter) equations, leaving a multiplier of |q|2 in the gain
equation (because ΞTΞ = |q|2I), which can be significant if |q|2 (the norm-squared of the estimated
quaternion) is not close to unity.
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ROTATION VECTOR ATTITUDE STATE

Attitude is inherently defined as a rotation with a minimum of three parameters. All three-
dimensional parameterizations of rotation exhibit a singularity for some particular angle of rotation,
and it is for this reason that the four-parameter quaternion is popular, even though it is subject
to a unit-norm constraint. Theoretical and practical complications of the quaternion attitude
estimator, which are due to the norm constraint and the 2-1 redundancy of the quaternion attitude
representation, are the subject of [3]–[7] and are not addressed here. The singularity in the three-
parameter representation can be avoided by ensuring that the angle of rotation is always small [15].

We have thus far examined the measurement sensitivity equations when the attitude state is
a quaternion. For comparison, we will now look at the measurement sensitivity equation when
the attitude is parameterized by a rotation vector [15]. The vector measurement equation can be
written

vs = Ts
bA(φb

i)v
i , (17)

where the attitude matrix is parameterized by the rotation vector as shown in equation (A–18a).
There is no constraint, and the measurement sensitivity matrix is easily found to be

Hφ =
∂vs

∂φT
= Ts

b[v
b×] . (18)

CONCLUSION

This paper presented many details and explained many subtleties that arise in computing mea-
surement sensitivity matrices for the purpose of attitude determination when the quaternion is the
attitude state. Many of these details and subtleties are not found or explained in the literature.

The quaternion must be normalized to unit norm either explicitly or implicitly in the measure-
ment equation for the measurement equation to be a physically and mathematically valid model.
Failure to do so can result in extraneous terms in the measurement sensitivity function, depend-
ing on whether the measurement is a vector, focal plane coordinates, or a normalized quaternion.
Furthermore, failure to recognize the quaternion constraint in the measurement model, regardless
of whether it is constrained in the filter state, can lead to an incorrect measurement sensitivity
equation. Inconsistent or ambiguous (i.e., incorrect) filter state estimates and covariances can then
result [3, 4], thus leading to ad hoc fixes and arbitrary “tuning” to make the quaternion attitude
determination filter work.

In the measurement model (1), the quaternion must be constrained to unit norm to obtain a
valid vector measurement. In the measurement model (5), the quaternion kinematics can be uncon-
strained, but normalization appears explicitly in the measurement model to obtain a valid vector
measurement. Thus, (6) is the correct measurement sensitivity matrix for vector measurements;
equations (3a)–(3c) are not the correct expressions to use.

Focal plane measurements are insensitive to the quaternion norm, and it was shown that the
extraneous term in equation (3c) is annihilated in the sensitivity matrix for focal plane measure-
ments. If the quaternion constraint is not properly handled, the filter state estimate can behave
differently for different types of attitude measurements containing the same attitude information.

The measurement sensitivity matrix for a quaternion measurement is commonly taken to be
the identity matrix, but because the measurement is of unit norm, the quaternion measurement
sensitivity matrix is not the identity matrix, regardless of whether the filter quaternion state is
constrained.
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A NOTATION, DEFINITIONS, AND QUATERNION PROPERTIES

Notation, definitions, quaternion properties and identities, and direction cosine matrix (DCM)
identities are provided in this appendix. We will denote a 3× 3 identity matrix by I and all other
identity matrices by I. A vector v in a particular frame a is denoted by va. A transformation
matrix is a DCM that can be used to transform a vector from a frame a to a frame b, which we
will denote by Tb

a, so we have vb = Tb
av

a. Quaternions may be adorned in the same manner as
transformation matrices.

Cross Product Operator and Operator Matrix

he cross-product operator × is such that for vectors u = [ux, uy, uz]
T and v = [vx, vy, vz]

T , we
have

u× v =





uyvz − uzvy

uzvx − uxvz

uxvy − uyvx



 . (A–1)

The cross-product operator matrix [u×] is defined such that

[u×]v = u× v (A–2)

where

[u×] =





0 −uz uy

uz 0 −ux

−uy ux 0



 . (A–3)

Since the cross-product matrix is skew-symmetric, we have [u×]T = −[u×] and u × v = −v × u.
A useful identity is [u×]2 = |u|2I− uuT . A reference frame transformation may be applied to the
cross-product matrix so that

[Tb
av

a×] = Tb
a[v

a×]Ta
b . (A–4)

Quaternion Operators

In the definitions that follow, let p, q, and r be quaternions represented as 4×1 column matrices
and let p̃, q̃, and r̃ be the corresponding hypercomplex quaternions. Also let Tp, Tq, and Tr be the
corresponding orthonormal direction cosine matrices. The subscript here is a shorthand notation
that simply indicates that T corresponds to a particular quaternion, otherwise we would have to
write, for example, T(q).

Quaternion operator notation is necessary because while the hypercomplex product p̃q̃ is well-
defined, it is technically incorrect and sometimes causes confusion to write the matrix product
pq. The use of operator notation removes this difficulty and provides much greater flexibility
in performing quaternion algebra. The quaternion operators and operator matrices to be intro-
duced are analagous to the cross-product operator × and operator matrix [u×]. The quaternion
q = [qx, qy, qz, qs]

T comprises the vector [qx, qy, qz]
T and the scalar qs. The norm (2-norm) of a

quaternion is given by |q| = (q2
x + q2

y + q2
z + qs)

1/2. It is usually assumed in attitude work that
quaternions have unit norm, but for generality we will not make that assumption here. (Ultimately,
however, an implicit or explicit normalization occurs when computing a rotation vector, Gibbs or
Rodriguez vector, DCM, or any other attitude representation.) The conjugate q∗ of a quater-
nion q = [qx, qy, qz, qs]

T is q∗ = [−qx, −qy, −qz, qs]
T . The inverse of q is q−1 = q∗/|q|2 so that

q⊗q−1 = q−1⊗q = [0, 0, 0, 1]T . For a unit quaternion, q∗ = q−1 so that q∗⊗q = q⊗q∗ = [0, 0, 0, 1]T

and similarly for the ~ operator, where ⊗ and ~ are quaternion multiplication operators defined
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below. The [q⊗] and [q~] operator matrices are also introduced. The ⊗ operator was introduced
in [10]. The operator matrices are this author’s invention.

The ⊗ Operator

The operator ⊗ and operator matrix [q⊗] are defined by

r = p⊗ q

= [p⊗]q

=









ps pz −py px

−pz ps px py

py −px ps pz

−px −py −pz ps

















qx

qy

qz

qs









(A–5)

For unit-norm quaternions, the quaternion product corresponds to the DCM product

r = p⊗ q ⇐⇒ Tr = TpTq

where the order of corresponding terms is the same, whereas in comparison with the hypercomplex
product

p⊗ q ⇐⇒ q̃p̃

the order of corresponding terms is reversed. Define

ϕ = |φ| φ̄ =

[

φ

0

]

q =





1
2
φ
sin(ϕ/2)

ϕ/2

cos(ϕ/2)



 (A–6)

Some useful identities follow:

(p⊗ q)∗ = q∗ ⊗ p∗ (A–7a)

[q⊗][q∗⊗] = [q⊗][q⊗]T = |q|2I (A–7b)

[q−1⊗] = [q⊗]−1 = [q⊗]T /|q|2 (A–7c)

[q⊗] = exp{1
2
[φ̄⊗]} = cos(ϕ/2)I + 1

2
[φ̄⊗]

sin(ϕ/2)

ϕ/2
(A–7d)

The ~ Operator

The ~ operator and operator matrix [q~] are defined by

r = q ~ p

= [q~]p

=









qs −qz qy qx

qz qs −qx qy

−qy qx qs qz

−qx −qy −qz qs

















px

py

pz

ps









(A–8)

For unit-norm quaternions, the quaternion product corresponds to the DCM product

r = q ~ p⇐⇒ Tr = TpTq (A–9)
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where the order of corresponding terms is reversed, whereas in comparison with the hypercomplex
product

q ~ p⇐⇒ q̃p̃ (A–10)

the order of corresponding terms is the same. Some useful identities are

(q ~ p)∗ = p∗ ~ q∗ (A–11a)

[q~][q∗~] = [q~][q~]T = |q|2I (A–11b)

[q−1
~] = [q~]−1 = [q~]T /|q|2 (A–11c)

[q~] = exp{1
2
[φ̄~]} = cos(ϕ/2)I + 1

2
[φ̄~]

sin(ϕ/2)

ϕ/2
(A–11d)

[q⊗][q~]−1 = [q~]−1[q⊗] =

[

Tq 0

0T 1

]

(A–11e)

p⊗ q = q ~ p (A–11f)

where ϕ, φ̄, and q as a function of φ were defined in equation (A–6).
The [q~] matrix can be partitioned such that [q~] = [Ξ q], where Ξ is a 4× 3 matrix. We will

write Ξ(p) for the partition of [p~], but otherwise assume that Ξ without an argument depends on
q in order to simplify the notation. Since [q~] is an orthonormal matrix for |q| = 1, we have that
ΞΞT + qqT = |q|2I, ΞTΞ = |q|2I, and ΞTq = 0.

Quaternion Transformation of a Vector

Let va be a vector in a frame a and vb be a vector in a frame b. If a quaternion q represents the
attitude of frame b with respect to frame a, the va is transformed to the frame b by

v̄b = q ⊗ v̄a ⊗ q−1 (A–12a)

= q−1
~ v̄a

~ q (A–12b)

where v̄a =

[

va

0

]

and v̄b =

[

vb

0

]

. The equivalence of equations (A–12a) and (A–12b) follows from

equation (A–11f). From equation (A–11e), we have that equations (A–12a) and (A–12b) are the
same as

[

vb

0

]

=

[

Tq 0

0T 1

][

va

0

]

. (A–13)

Associativity and Commutativity

Quaternion operators of the same kind are associative, that is,

p⊗ q ⊗ r = (p⊗ q)⊗ r = p⊗ (q ⊗ r) (A–14a)

p~ q ~ r = (p~ q) ~ r = p~ (q ~ r) (A–14b)

However, quaternion operators that are not the same kind are not associative, that is,

(p⊗ q) ~ r 6= p⊗ (q ~ r) (A–15a)

(p~ q)⊗ r 6= p~ (q ⊗ r) (A–15b)
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so the expressions p⊗ q ~ r and p~ q ⊗ r are ambiguous.
Equation (A–11f) indicates that quaternions are, in general, not commutative in their product.

They are commutative only if their axes of rotation are in the same direction, which is also true of
direction cosine matrices.

Parameterizations of the Attitude Matrix

Equation (A–11e) shows one way to compute the attitude matrix A(q) = Tq, namely

A(q) = (s2 − |r|2)I− 2s[r×] + 2rrT (A–16a)

= (s2 + |r|2)I− 2s[r×] + 2[r×]2 (A–16b)

where the quaternion is partitioned into its vector part r and a scalar part s,

q =

[

r

s

]

. (A–17)

The attitude matrix can also be written in terms of a rotation vector φ with ϕ = |φ|,

A(φ) = exp(−[φ×]) = (cosϕ)I−
sinϕ

ϕ
[φ×] +

1− cosϕ

ϕ2
φφT (A–18a)

= I−
sinϕ

ϕ
[φ×] +

1− cosϕ

ϕ2
[φ×]2 (A–18b)

B MEASUREMENT SENSITIVITY MATRIX (SHUSTER)

A different approach is taken in [5, 6] to compute the sensitivity of a vector measurement to
the unconstrained quaternion state. However, the result obtained therein (Eq. (37) of [5] is of a
different form than equations (3a) and (3c) and it is not obvious that it is equivalent to equations
(3a) and (3c). We will first outline the derivation from [5, 6] (using this author’s notation) and
then show how to produce the same result as (3a). We start with Eq. (17) of [5], which is the scalar
measurement

z = uTA(q)vi (B–1)

where vi is a reference vector, A(q) is the attitude matrix computed from the attitude quaternion
q, and u is an auxilary vector. Substitute equation (A–16b) into the measurement equation and
differentiate with respect to q. The algebra involved is similar to that in the first section after the
Introduction to this paper. The measurement sensitivity matrix is

Hq =
∂z

∂qT
= −2(ū⊗ q ⊗ v̄)T (B–2)

By alternately letting u equal the elementary vectors 1 = [1, 0, 0]T , 2 = [0, 1, 0]T , and 3 = [0, 0, 1]T ,
we construct the complete vector measurement equation (1) and the measurement sensitivity matrix

Hq = −2







(1̄⊗ q ⊗ v̄)T

(2̄⊗ q ⊗ v̄)T

(3̄⊗ q ⊗ v̄)T






(B–3)

from which we obtain almost immediately,

Hq = −2ΞT (q ⊗ v̄) . (B–4)
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In this expression, q ⊗ v̄ is the argument of Ξ, that is, Ξ is formed from the elements of q ⊗ v̄.
Equation (B–4) does not appear to be the same as equation (3a), but its equivalence is easily
established as follows. Transpose equation (B–3) and apply equation (A–11f) to get

HT
q = −2

[

1̄⊗ q ⊗ v̄
∣

∣ 2̄⊗ q ⊗ v̄
∣

∣ 3̄⊗ q ⊗ v̄
]

= −2
[

v̄ ~ q ~ 1̄
∣

∣ v̄ ~ q ~ 2̄
∣

∣ v̄ ~ q ~ 3̄
]

= −2[v̄~] [q~]

[

I

0

]

(B–5)

Transposing again yields
Hq = 2[I 0] [q∗~] [v̄~] (B–6)

which is the same as equation (3a).
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